Möbius Iterated Function Systems
نویسنده
چکیده
Iterated function systems have been most extensively studied when the functions are affine transformations of Euclidean space and, more recently, projective transformations on real projective space. This paper investigates iterated function systems consisting of Möbius transformations on the extended complex plane or, equivalently, on the Riemann sphere. The main result is a characterization, in terms of topological, geometric, and dynamical properties, of Möbius iterated function systems that possess an attractor. The paper also includes results on the duality between the attractor and repeller of a Möbius iterated function system.
منابع مشابه
Rotation number and its properties for iterated function and non-autonomous systems
The main purpose of this paper is to introduce the rotation number for non-autonomous and iterated function systems. First, we define iterated function systems and the lift of these types of systems on the unit circle. In the following, we define the rotation number and investigate the conditions of existence and uniqueness of this number for our systems. Then, the notions rotational entropy an...
متن کاملConjugacy Classification of Quaternionic Möbius Transformations
It is well known that the dynamics and conjugacy class of a complex Möbius transformation can be determined from a simple rational function of the coefficients of the transformation. We study the group of quaternionic Möbius transformations and identify simple rational functions of the coefficients of the transformations that determine dynamics and conjugacy.
متن کاملChaotic property for non-autonomous iterated function system
In this paper, the new concept of non-autonomous iterated function system is introduced and also shown that non-autonomous iterated function system IFS(f_(1,∞)^0,f_(1,∞)^1) is topologically transitive for the metric space of X whenever the system has average shadowing property and its minimal points on X are dense. Moreover, such a system is topologically transitive, whenever, there is a point ...
متن کاملDiscrete Iterated Function Systems
discrete iterated function systems discrete iterated function systems representation of discrete sequences with dimensional discrete iterated function systems discrete iterated function systems stochastic discrete scale invariance: renormalization representation of discrete sequences with high-dimensional power domains and iterated function systems fractal tilings from iterated function systems...
متن کاملOn the Relation between Iterated Function Systems and Partitioned Iterated Function Systems on the Relation between Iterated Function Systems and Partitioned Iterated Function Systems on the Relation between Iterated Function Systems and Partitioned Iterated Function Systems
In this paper, we give a theoretically founded transition from Iterated Function Systems based on aane transformations to Partitioned Iterated Function Systems. We show that there are two essential steps, namely, restricting the aane transformations, and solving the evoked problem of ink dissipation. In this paper, we give a theoretically founded transition from Iterated Function Systems based ...
متن کامل